Pacemaker potentials generated by interstitial cells of Cajal in the murine intestine.

نویسندگان

  • Yoshihiko Kito
  • Sean M Ward
  • Kenton M Sanders
چکیده

Pacemaker potentials were recorded in situ from myenteric interstitial cells of Cajal (ICC-MY) in the murine small intestine. The nature of the two components of pacemaker potentials (upstroke and plateau) were investigated and compared with slow waves recorded from circular muscle cells. Pacemaker potentials and slow waves were not blocked by nifedipine (3 microM). In the presence of nifedipine, mibefradil, a voltage-dependent Ca(2+) channel blocker, reduced the amplitude, frequency, and rate of rise of upstroke depolarization (dV/dt(max)) of pacemaker potentials and slow waves in a dose-dependent manner (1-30 microM). Mibefradil (30 microM) changed the pattern of pacemaker potentials from rapidly rising, high-frequency events to slowly depolarizing, low-frequency events with considerable membrane noise (unitary potentials) between pacemaker potentials. Caffeine (3 mM) abolished pacemaker potentials in the presence of mibefradil. Pinacidil (10 microM), an ATP-sensitive K(+) channel opener, hyperpolarized ICC-MY and increased the amplitude and dV/dt(max) without affecting frequency. Pinacidil hyperpolarized smooth muscle cells and attenuated the amplitude and dV/dt(max) of slow waves without affecting frequency. The effects of pinacidil were blocked by glibenclamide (10 microM). These data suggest that slow waves are electrotonic potentials driven by pacemaker potentials. The upstroke component of pacemaker potentials is due to activation of dihydropyridine-resistant Ca(2+) channels, and this depolarization entrains pacemaker activity to create the plateau potential. The plateau potential may be due to summation of unitary potentials generated by individual or small groups of pacemaker units in ICC-MY. Entrainment of unitary potentials appears to depend on Ca(2+) entry during upstroke depolarization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modulation of pacemaker potentials by pyungwi-san in interstitial cells of cajal from murine small intestine: pyungwi-san and interstitial cells of cajal.

OBJECTIVE Pyungwi-san (PWS) plays a role in a number of physiologic and pharmacologic functions in many organs. Interstitial cells of Cajal (ICCs) are pacemaker cells that generate slow waves in the gastrointestinal (GI) tract. We aimed to investigate the beneficial effects of PWS in mouse small-intestinal ICCs. METHODS Enzymatic digestion was used to dissociate ICCs from the small intestine ...

متن کامل

Naringenin inhibits pacemaking activity in interstitial cells of Cajal from murine small intestine

BACKGROUND Naringenin (NRG) is a common dietary polyphenolic constituent of fruits. NRG has diverse pharmacological activities, and is used in traditional medicine to treat various diseases including gastrointestinal (GI) disorders. Interstitial cells of Cajal (ICCs) are pacemaker cells of the GI tract. In this study, the authors investigated the effects of NRG on ICCs and on GI motility in vit...

متن کامل

Involvement of MAPKs and PLC Pathways in Modulation of Pacemaking Activity by So-Cheong-Ryong-Tang in Interstitial Cells of Cajal from Murine Small Intestine

PURPOSE Interstitial cells of Cajal (ICCs) are the pacemaker cells that generate slow waves in the gastrointestinal (GI) tract. We have aimed to investigate the effects of Socheongryong-Tang (SCRT) in ICCs from mouse's small intestine. METHODS The whole-cell patch-clamp configuration was used to record membrane potentials from cultured ICCs. Intracellular Ca(2+) ([Ca(2+)]i) increase was studi...

متن کامل

Hwangryunhaedok-tang induces the depolarization of pacemaker potentials through 5-HT3 and 5-HT4 receptors in cultured murine small intestine interstitial cells of Cajal

AIM To investigate the effects of a water extract of Hwangryunhaedok-tang (HHTE) on the pacemaker potentials of mouse interstitial cells of Cajal (ICCs). METHODS We dissociated ICCs from small intestines and cultured. ICCs were immunologically identified using an anti-c-kit antibody. We used the whole-cell patch-clamp configuration to record the pacemaker potentials generated by cultured ICCs...

متن کامل

Ginsenoside Re inhibits pacemaker potentials via adenosine triphosphate-sensitive potassium channels and the cyclic guanosine monophosphate/nitric oxide-dependent pathway in cultured interstitial cells of Cajal from mouse small intestine

BACKGROUND Ginseng belongs to the genus Panax. Its main active ingredients are the ginsenosides. Interstitial cells of Cajal (ICCs) are the pacemaker cells of the gastrointestinal (GI) tract. To understand the effects of ginsenoside Re (GRe) on GI motility, the authors investigated its effects on the pacemaker activity of ICCs of the murine small intestine. METHODS Interstitial cells of Cajal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 288 3  شماره 

صفحات  -

تاریخ انتشار 2005